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NetQuil is an open-source Python framework for quantum networking simulations built on the
quantum computing framework pyQuil, by Rigetti Computing. NetQuil is built for testing ideas in
quantum network topology and distributed quantum protocol. It allows users to create multi-agent
networks, connect parties through classical and quantum channels, and introduce noise. NetQuil also
makes running multiple trials for non-deterministic experiments, reviewing traffic in real-time, and
synchronizing agents based on local and master clocks simple and easy. We provide an overview of
the state of distributed quantum protocol and a basic introduction to netQuil’s framework. Finally,
we present several demonstrations of canonical quantum information protocols built using netQuil’s
distributed quantum gates and pyQuil.

I. INTRODUCTION

Quantum information theory has garnered widespread
attention since Shor’s [1] factorization algorithm and
Grover’s [2] sublinear search algorithm emerged in the
late 90s. A lack of reliable quantum hardware and in-
creased access to classical computing systems has stim-
ulated the emergence of quantum computing simulators
(QCSs). QCSs have become an affordable and accessi-
ble testbed for quantum information theory research and
include Qiskit n[3], Quil [4], Q# [5], QCL [6], Quipper
[7], QX[8], and Strawberry Fields [9]. These simulators
have created a public ecosystem for exploring noiseless,
single-party quantum computations and are available to
amateurs and experts alike.

Although QCSs enable simultaneous advancements in
quantum algorithms and quantum hardware, modern
quantum computing hardware remains marred by gate
errors and decoherence [10], features which few QCSs ac-
count for. Additionally, state-of-the-art quantum com-
puters are limited to computations involving tens of
qubits and minimal gate operations [11]. Such limita-
tions may be addressed by performing distributed quan-
tum computations via a quantum network: a system of
remote quantum computers that can distribute quantum
and classical information between each other. Realizing
a quantum network will require mitigating the impact of
gate errors and decoherence, necessitating advancements
in quantum error correction (QEC) [12] and indicating
the need for a QCS ecosystem that moves beyond sin-
gle party, noiseless quantum computations. Squanch [13]
and Simulaqron [14] have emerged as two quantum net-
working and quantum internet simulators.

Here, we introduce netQuil, an open-source Python
[15] framework for simulating quantum networks. Un-
like existing distributed quantum computing (DQC) sim-
ulators, which build their computations from scratch,
NetQuil is designed to be an extension of the popular
quantum computing framework Quil [4], by Rigetti Com-
puting. In addition to the quantum computing simula-
tion capacity provided by Quil, NetQuil can be used to
create multi-agent networks of quantum computers con-
nected via classical and quantum channels. Agents can

send quantum and classical information, introduce noise,
simulate devices, run multiple trials for non-deterministic
experiments, review traffic in real-time, and synchronize
agents with master and local clocks. Each trial in a sim-
ulation is fully parallelized and generates a Quil program
that can be run on a quantum virtual machine (qvm) or
quantum processing unit (qpu).

This white-paper is organized as follows: section II
provides a brief review of quantum information theory
and quantum networking, followed by an overview of the
state of distributed quantum protocol. Section III intro-
duces netQuil and its relationship with Quil, implementa-
tion of quantum agents, quantum and classical channels,
and devices and noise. This section also discusses two
primitive distributed quantum protocol [16], their usage,
and netQuil’s implementation. Section IV offers a set
of demonstrations of canonical quantum networking pro-
tocols using netQuil, such as teleportation, superdense-
coding, and the middleman attack. Finally, section V
describes netQuil’s limitations and future work.

II. STATE OF DISTRIBUTED QUANTUM
PROTOCOL

Distributed quantum computing (DQC) is a means of
solving a problem cooperatively using quantum multiple
devices. Each node on a quantum network is connected
via a classical and quantum channel and manages its own
classical for storing bits of information such as measure-
ments. Nodes may not modify or interact with qubits
that they do not physically possess without performing
teleportation, using non-local operations, or physically
receiving the qubits from a different agent.

Current experimental distributed quantum computing
is quite primitive. Experimental realization requires ad-
vances in quantum processor, network, and transduction
techniques. The state of each technology has been ex-
tensively reviewed and will not be explicitly discussed
in this paper (Remember for Yewon to come back
and add citations). There have been demonstrations
of simple protocols such as quantum teleportation prov-
ing the possibility of more advanced quantum computing
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[17]. However, this next step of performing more ad-
vanced algorithms of larger entangled systems has yet to
be demonstrated due to the limitations in current quan-
tum technology. Furthermore, there are few platforms
providing means to simulate distributed quantum com-
putation. Our framework is loosely based on quantum
network simulation platform SQUANCH [13], however
netQuil focuses on distributing quantum computation
among multiple quantum computing agents.

III. FRAMEWORK OVERVIEW

In this section we briefly outline the components of
a quantum network in netQuil, and provide some basic
formalism for describing distributed quantum protocols.
Throughout this paper a working knowledge of linear al-
gebra and quantum information is assumed.

Figure 1. Layout of netQuil system

A. Quantum computation using pyquil

Pyquil is an open-source Python library for generating
and executing quantum instruction language (Quil) pro-
grams on a quantum virtual machine (qvm) or on one of
Rigetti’s real quantum processing units (qpu). Quil pro-
grams are codified versions of quantum algorithms whose
instructions correspond to specific quantum gates per-
formed on a quantum system. Quil programs are line-
based, assembly-like and provide conditional branching
and classical feedback. Each trial run by a netQuil simu-
lation operates on qubits managed by a single Quil pro-
gram and returns the final Quil program to be run on a
qvm or qpu. For this reason, agents do not pass qubits
between each other, but rather, the index in the quan-
tum system that the qubit corresponds to, along with the
right to modify and operate using that qubit. By work-
ing within the bounds of pyQuil, netQuil both leverages
its extensive quantum computing abilities and inherits
its limitations, as discussed in section V.

B. Quantum agents

Multi-agent algorithms in quantum information theory
are often described using the archetypal, fictional charac-
ters Alice and Bob. In netQuil, Agent is a base class, cod-
ified version of Alice or Bob, representing a single node in
quantum network. Agents maintain a register for storing
classical information, a local clock that increments based
on traffic and device delay, and a set of qubits. Agents are
connected via quantum and classical channels described
by transit devices and maintain source and target devices
that egress and ingress information travels through, re-
spectively. Moreover, for parallelization, each agent runs
on its own thread.

C. Quantum channels and devices

This subsection briefly explains quantum and classical
channels and their properties and relationship to agents
in a quantum network.

Conceptually, a channel is a communication line that
allows the transmission of classical or quantum informa-
tion between two or more agents. Channels can be mod-
eled as a single device or a set of devices that quantum
bits and classical bits must travel through. A device
is a codified, single piece of hardware in the simulated
quantum network. This would include devices such as
a router, modem, repeater, and network switch in classi-
cal networking. In quantum networking, physical devices
involved in quantum channels include fiber optics, trans-
ducers, free space, and quantum optical devices. Associ-
ated with each device in a quantum network is its physi-
cal effect on qubits, a consequence of undesirable environ-
mental coupling (i.e., noise), and the time it takes qubits
to pass through the device. In order to model this be-
havior, each device contains a noise model that is applied
to a qubit in transit. Although there are a variety of er-
rors that can occur during transmission, netQuil’s noise
models are limited to unitary operations and photon loss.

There are three types of devices in netQuil: source,
transit, and target devices. Source and target devices
are associated with an agent, while transit devices are
associated with quantum channels. When a qubit leaves
Alice and travels to Bob, the qubit originates from Al-
ice’s source devices, travels through the transit devices
attached to their quantum channel and ends by arriving
through Bob’s target devices (Figure 2). The order in
which a qubit passes through each device corresponds to
the order in which those devices were added to either the
agent or connection.

Most devices can be arbitrarily complex in their de-
sign and can depend on environmental factors such as
temperature, humidity, or pressure. NetQuil has a host
of built-in devices, but also allows users to build arbitrar-
ily complex custom devices.
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Figure 2. Circuit diagram representing a quantum state p̂in
traveling through source devices, S, a quantum channel N ,
and target devices T that each couple with the environment
to produce a modified quantum state p̂out

D. Distributed Quantum Protocol

In this section we describe two primitive quantum pro-
tocol, the cat-entangler and cat-disentangler, for dis-
tributed quantum computing as introduced by Yim-
siriwattana and Lomonaco [16, 18]. We then explain
netQuil’s implementation of the cat-entangler and cat-
disentangler and how they can be cleverly combined to
implement non-local CNOTS, non-local controlled gates,
and teleportation. For a demonstration of teleportation
using the cat-entangler and cat-disentanlger read Section
IV D.

Eisert et al. [19] demonstrated that a universal set of
gates for distributed quantum computing could be con-
structed through non-local CNOT gates and one-qubit
gates. The cat-entangler and cat-disentangler are two
primitive operations that were chosen as the basis for
netQuils distributed quantum protocol for their ability
to implement non-local operations such as the non-local
CNOT.

1. Cat-Entangler

Using the cat-entangler, a single agent, Alice, in pos-
session of an arbitrary control qubit, |Ψ〉 = α |0〉+ β |1〉,
may distribute control among multiple agents, Bob and
Charlie, given that all agents share a system of entangled
qubits |S〉 = 1√

2
|000〉 + 1√

2
|111〉 that can be placed in

a ’cat-like’ state, α |0000〉 + β |1110〉. The cat-entangler
circuit is described in Figure 3. Non-local operations de-
pend upon a means of distributing control among multi-
ple qubits, making the cat-entangler a powerful primitive
operator for distributed quantum computing.

α |0〉+ β |1〉 •
|0〉 X |0〉

|0〉 X α |0000〉+ β |1110〉

|0〉 X

Figure 3. Cat-entangler circuit: The dark curved lines be-
tween wires two and four represent entangled qubits (i.e.
1√
2
(|000〉+ |111〉)). In this case, wires one and two are owned

by Alice, three by Bob, and four by Charlie. The double and
triple lines represent a measurement result that is passed via
a classical channel and used to control the X gates.

2. Cat-Disentangler

Once all agents have used the shared control bit to
perform their local operation the cat-disentangler can be
used to restore the system to its former state. Figure 4
outlines the cat-disentangler circuit.

H Z α |0〉+ β |1〉
|0〉

H X |0〉

H X |0〉

Figure 4. Cat-disentangler circuit: The Z gate on the first
wire is controlled by the exclusive-or (⊕) of the classical bits
resulting from the measurements on qubits two and three.
In netQuil, if notify=True, the cat-disentangler will send a
classical bit to each participating agent (excluding the caller),
notifying all parties that the entangler has finished. The caller
is defined as the agent passed to the control.

IV. DEMONSTRATIONS

In this section we present a number of canonical quan-
tum information protocol implemented using netQuil and
pyQuil.

A. Quantum teleportation

Quantum teleportation is a protocol to deliver any ar-
bitrary quantum state, |Ψ〉, between agents that share
a maximally entangled state (a bell state pair) using a
classical communication channel. Quantum teleportation
is an extremely valuable and fundamental protocol for
quantum networks, because it allows agents to transfer
arbitrary quantum states to the sender.

Note that due to the requirement of classical com-
munication, this protocol does not validate faster-than-
light communication. Quantum teleportation transports
a quantum state by sending two bits (one classical and
one quantum), and thus is the inverse of superdense cod-
ing.

Quantum teleportation involves three agents, Alice,
Bob, and Charlie. Charlie prepares a bell state pair and
distributes the entangled qubits to Alice and Bob. Al-
ice entangles her qubit |Ψ〉 with her bell state pair from
Charlie, and then measures her qubits. Based on these
measurements, Bob can recreate Alice’s qubit |Ψ〉 by us-
ing X and Z gates. In this demonstration, we implement
the canonical protocol using netQuil and pyQuil:

1. Charlie creates a bell state pair using a Hadamard
(H) and controlled-not (CNOT) gate, |AB〉 =
1√
2
(|00〉 + |11〉). He then sends qubit A to Alice

and qubit B to Bob.
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2. Alice projects her arbitrary quantum state |Φ〉 =
α |0〉 + β |1〉 onto qubit A using a controlled-not
and a Hadamard gate. The 3-qubit quantum sys-
tem, |ΨAB〉, is in state: 1

2 [|00〉 (α |0〉 + β |1〉) +
|01〉 (α |1〉+β |0〉)+ |10〉 (α |0〉−β |1〉)+ |11〉 (α |1〉−
β |0〉)].

3. Alice measure |Ψ〉 and A and classically sends the
results to Bob. As a result of the measurements,
Bob’s state collapses to one of the four bell states.

4. Bob recreates |Ψ〉 based on Alice’s measurements,
namely by applying a Pauli-X (X) gate if A is mea-
sured to be |1〉 or applying a Pauli-Z (Z) gate if Ψ
is measured to be |1〉. Bob’s qubit, B, is now in
state |Ψ〉 = α |0〉+ β |1〉.

Charlie Alice Bob

|ψ〉 • H •

|0A〉 H •

|0B〉 Z |ψ〉

Figure 5. Teleportation: Alice wishes to send Bob her qubit
state, |ψ〉, using classical information. She projects her state,
|ψ〉, onto her bell state pair from Charlie and then collapses
each qubit by measurement. She informs Bob of her measure-
ments. Bob then applies a X gate, represented by a CNOT
gate from the |0A〉 measurement, and a Z from the |ψ〉 mea-
surement. Thus, Bob can recreate Alice’s state through clas-
sical information.

from netQuil import *
from pyquil import Program
from pyquil.api import QVMConnection
from pyquil.gates import *

class Charlie(Agent):
'''Charlie distributes bell pair'''
def run(self):

# Create bell state pair
p = self.program
p += H(0)
p += CNOT(0,1)

self.qsend(alice.name, [0])
self.qsend(bob.name, [1])

class Alice(Agent):
'''Alice projects her state on pair'''
def run(self):

p = self.program

# Define Alice's Qubits
phi = self.qubits[0]
qubits = self.qrecv(charlie.name)

a = qubits[0]

# Entangle Ancilla and Phi
p += CNOT(phi, a)
p += H(phi)

# Measure Ancilla and Phi
p += MEASURE(a, ro[0])
p += MEASURE(phi, ro[1])

class Bob(Agent):
'''Bob recreates Alice's state'''
def run(self):

p = self.program

# Define Bob's qubits
qubits = self.qrecv(charlie.name)
b = qubits[0]

# Prepare state
p.if_then(ro[0], X(b))
p.if_then(ro[1], Z(b))

p = Program()
p += H(2)

# Create classical memory
ro = p.declare('ro', 'BIT', 3)

# Create Alice, Bob, and Charlie.
alice = Alice(p, qubits=[2])
bob = Bob(p, name='bob')
charlie = Charlie(p, qubits=[0,1])

# Connect agents
QConnect(alice, bob, charlie)
CConnect(alice, bob)

# Run simulation
Simulation(alice, bob, charlie).run()
qvm = QVMConnection()
qvm.run(p)

B. Superdense coding

Superdense coding is a canonical protocol for deliv-
ering any two classical bits using a single quantum bit.
The protocol allows two agents, Alice and Bob, to use a
maximally entangled quantum system along with a single
qubit to transmit two classical bits of information.

This protocol enables quantum computers to interact
as a network in sharing classical information using qubits.
Superdense coding transports two classical bits by send-
ing a single qubit, and thus is the inverse of quantum
teleportation. With stable qubit transit devices and a
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quantum memory, superdense coding in theory can dou-
ble the information density of messages during the peak
transmission and use down time to distribute the entan-
gled pair.

Superdense coding involves three agents: Alice, Bob,
and Charlie. Charlie prepares the bell state pair and
distributes the entangled qubits to Alice and Bob. Alice
operates on her bell state pair from Charlie based on the
classical bits she wishes to send to Bob. Alice then sends
her bell state pair to Bob. Finally, Bob switches back
into a computational basis and measures each qubit to
recreate Alice’s classical bits.

Charlie Alice Bob

(b1, b2) • •
|0A〉 H • Z • H |b1〉

|0B〉 |b2〉

Figure 6. Superdense Coding: The b1, b2 bits are the classical
bits that Alice is sending to Bob. Charlie creates and dis-
tributes the bell state pair to Alice and Bob. Alice projects
her classical information onto her bell state pair qubit from
Charlie and sends her bell state pair to Bob. Bob manipulates
the qubits and measures the same classical information Alice
originally wished to send to him.

1. Charlie creates a bell state pair using a Hadamard
(H) and controlled-not (CNOT) gate, |AB〉 =
1√
2
(|00〉 + |11〉). He then sends qubit A to Alice

and qubit B to Bob

2. Alice operates on her qubit based on the classical
bits she wants to send to Bob. If her first classical
bit is a 1, she operates on her qubit with an X gate.
If her second classical bit is a 1, she operates on her
qubit with a Z gate. Then, she sends her qubit to
Bob.

The 2-qubit quantum system, |ΨAB〉, is one of
the four bell states: 1√

2
(|00〉 + |11〉), 1√

2
(|00〉 −

|11〉), 1√
2
(|10〉+ |01〉), 1√

2
(|01〉 − |10〉).

3. Bob returns to the computational basis by applying
a controlled-not and a Hadamard gate to the qubit
from Charlie and Alice. Finally, Bob measures each
qubit and now has both of Alice’s classical bits.

from netQuil import *
from pyquil import Program
from pyquil.api import QVMConnection
from pyquil.gates import *

class Charlie(Agent):
'''Charlie distributes bell pair'''
def run(self):

# Create Bell State Pair

p = self.program
p += H(0)
p += CNOT(0,1)

self.qsend(alice.name, [0])
self.qsend(bob.name, [1])

class Alice(Agent):
'''Alice sends superdense-encoded cbits'''
def run(self):

p = self.program
qCharlie = self.qrecv(charlie.name)
a = qCharlie[0]

bit1 = self.cmem[0]
bit2 = self.cmem[1]

if bit2 == 1: p += X(a)
if bit1 == 1: p += Z(a)
self.qsend(bob.name, [a])

class Bob(Agent):
'''
Bob reconstructs Alice's classical bits
'''
def run(self):

p = self.program

# Get qubits from Alice and Charlie
qAlice = self.qrecv(alice.name)
qCharlie = self.qrecv(charlie.name)
a = qAlice[0]
c = qCharlie[0]

p += CNOT(a,c)
p += H(a)
p += MEASURE(a, ro[0])
p += MEASURE(c, ro[1])

p = Program()
p += H(2)

# Create classical memory
ro = p.declare('ro', 'BIT', 3)

# Create Alice, Bob, and Charlie.
alice = Alice(p, qubits=[2])
bob = Bob(p, name='bob')
charlie = Charlie(p, qubits=[0,1])

# Connect agents
QConnect(alice, bob, charlie)
CConnect(alice, bob)

# Run simulation
Simulation(alice, bob, charlie).run()
qvm = QVMConnection()
qvm.run(p)
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C. Middle-man attack

Middle-Man Attack is a demonstration of quantum
networks resistance against intruders. This demo ex-
tends superdense coding by allowing two agents, Alice
and Bob, to send numerous classical bits using bell state
pairs. However, in this protocol, there is an intruder
agent, Eve, who attempts to intercept and measure the
information. Despite successfully intercepting Alice and
Bob’s message, due to Eve not sharing a bell state pair
with Alice, Eve only measures random noise. Moreover,
Bob is able to detect if an intruder has intercepted the
message.

The middle-man attack involves four agents, Alice,
Bob, Charlie, and Eve. Following the superdense cod-
ing protocol, Charlie prepares the bell state pair and dis-
tributes the entangled qubits to Alice and Bob. Alice
then operates on her bell state pair from Charlie based
on the classical bits she wishes to send to Bob and sends
her bell state pair to Bob. This process can be repeated
for any number of classical bits that Alice wishes to send.

The attack occurs when Eve intercepts Alice’s qubits
on the way to Bob, measures the qubits, and re-transmits
them to Bob. Due to Eve not having a bell state pair and
her measurement collapsing the state of the qubit, Eve
only intercepts random noise, while Bob can immediately
detect the presence of an intruder.

(b1, b2) • •
Z Alice

|0A〉 H • Eve

Charlie

|0B〉 • H |b1〉
Bob

|b2〉

Figure 7. Middle-Man Attack Circuit: The b1, b2 bits are
classical bits that Alice is attempting to send to Bob. Charlie
creates and distributes the bell state pair to Alice and Bob.
Eve intercepts and measures the qubit sent from Alice to Bob,
which is only random noise as Eve does not have the bell state
pair, and alerts Bob to an intruder.

1. Charlie creates a bell state pair using a Hadamard
(H) and controlled-not (CNOT) gate, |AB〉 =
1√
2
(|00〉 + |11〉). He then sends qubit A to Alice

and qubit B to Bob

2. Alice operates on her qubit based on the classical
bits she wants to send to Bob. If her first classical
bit is a 1, she operates on her qubit with a X gate.
If her second classical bit is a 1, she operates on

her qubit with a Z gate. Then, she sends her qubit
(unknowingly) to the intruder, Eve.

3. Eve measures the qubit from Alice and re-transmits
it to Bob.

4. Bob returns to the computational basis by apply-
ing a controlled-not and a Hadamard gate to the
qubit from Charlie and from Eve (thinking it is
from Alice). Finally, Bob measures each qubit and
the results are equal to both of Alice’s classical bits.

from netQuil import *
from pyquil import Program
from pyquil.api import QVMConnection
from pyquil.gates import *

class Charlie(Agent):
'''Charlie distributes bell pair'''
def run(self):

# Create Bell State Pair
p = self.program
p += H(0)
p += CNOT(0,1)

self.qsend(alice.name, [0])
self.qsend(bob.name, [1])

class Alice(Agent):
'''Alice sends superdense-encoded cbits'''
def run(self):

p = self.program
for i in range(0,len(self.cmem),2):

bit1 = self.cmem[i]
bit2 = self.cmem[i+1]
qCharlie = self.qrecv(charlie.name)
a = qCharlie[0]

if bit2 == 1: p += X(a)
if bit1 == 1: p += Z(a)

self.qsend(eve.name, [a])

class Bob(Agent):
'''
Bob reconstructs Alice's classical bits
'''
def run(self):

p = self.program
for i in range(0,len(alice.cmem),2):

qAlice = self.qrecv(eve.name)
qCharlie = self.qrecv(charlie.name)
a = qAlice[0]
c = qCharlie[0]
p += CNOT(a,c)
p += H(a)
p += MEASURE(a, ro[i])
p += MEASURE(c, ro[i+1])
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class Eve(Agent):
'''
Eve intercepts, measures, and sends to Bob
'''
def run(self):

p = self.program
for i in range(0,len(alice.cmem),2):

qAlice = self.qrecv(alice.name)
a = qAlice[0]
p += MEASURE(a, ro[i+len(alice.cmem)])
self.qsend(bob.name, [a])

import matplotlib.image as image

img = image.imread("./Images/Logo.jpeg")
img_bits = list(np.unpackbits(img))

program = Program()
ro = program.declare('ro', 'BIT', 2*len(img_bits))

qubitsUsed = list(range(len(img_bits)))
resultsEve = []
resultsBob = []

alice = Alice(program, cmem=img_bits)
bob = Bob(program)
charlie = Charlie(program, qubits=qubitsUsed)
eve = Eve(program)

QConnect(alice, bob, charlie, eve)

#define agents
alice = Alice(program, cmem=curImg_bits)
bob = Bob(program)
charlie = Charlie(program, qubits=qubitsUsed)
eve = Eve(program)

#connect agents
QConnect(alice, bob, charlie, eve)

#simulate agents
Simulation(alice,charlie,bob,eve).run()
qvm = QVMConnection()
results = qvm.run(program)

#window of current quantum bits
startWindow = 0
endWindow = 20

while end <= len(img_bits):
curImg_bits = img_bits[start:end]
qubitsUsed = list(range(len(curImg_bits)))

program = Program()
mem_len = 2*len(curImg_bits)
ro = program.declare('ro', 'BIT', mem_len)

#define agents
alice = Alice(program, cmem=curImg_bits)
bob = Bob(program)
charlie = Charlie(program, qubits=qubitsUsed)
eve = Eve(program)

#connect agents
QConnect(alice, bob, charlie, eve)

#simulate agents
Simulation(alice,charlie,bob,eve).run()
qvm = QVMConnection()
results = qvm.run(program)

#record results
resBob = results[0][0:len(curImg_bits)]
resEve = results[0][len(curImg_bits):]
resultsBob.extend(resBob)
resultsEve.extend(resEve)

#iterate
start = end
if end == len(img_bits):

break
elif len(img_bits) >= end+20:

end += 20
else:

end = len(img_bits)

D. Distributed Protocol

In this demonstration, we introduce netQuil’s dis-
tributed protocol library that implements a set of non-
local operations. This library will introduce the primi-
tive cat-entangler and cat-disentangler as introduced by
Yimsiriwattana and Lomonaco [16], and their usage in
non-local CNOTs, non-local controlled gates, and tele-
portation as described in section III D.

NetQuil’s implementation of the cat-entangler requires
that only one agent initiate and execute the circuit.
NetQuil will transport the qubits and cbits between
agents, update their clocks, and appropriately apply de-
vices. If notify=True, the cat-entangler will send a
classical bit to each participating agent (excluding the
caller), notifying all parties that the entangler has fin-
ished. The caller is defined as the agent passed to the
control. If entangled=False, the cat-entangler will en-
tangle the target qubits and the measurement qubit be-
fore performing the circuit.

Once all agents have used the shared control bit to
perform their local operation, the cat-disentangler can
be used to restore the system to its former state.

It has been shwon that the controlled-NOT gate,
Hadamard gate, and 45◦ phase gate together can be com-
posed to create a universal quantum gate [19]. Therefore,
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Figure 8. Middle Man Demo Image: Alice wants to send her image made up of classical bits to Bob using qubits. Eve intercepts
the qubits from Alice to Bob, but only measures random noise. Eve’s intrusion alerts Bob to her presence as half of his qubit
measurements are corrupted.

in order to construct a universal set of operators for DQC,
we must only construct a non-local CNOT gate, which
can be done with the cat-entangler and cat-disentangler.

Below is an example of teleportation using the cat-
entangler and cat-disentangler.

from netQuil import *
from pyquil import Program
from pyquil.api import WavefunctionSimulator,
QVMConnection
from pyquil.gates import *

class Alice(Agent):
'''
Alice uses cat-entangler and
cat-disentangler to teleport psi to Bob
'''
def teleportation(self, psi, a, b):

cat_entangler(
control=(self, psi, a, ro),
targets=[(bob, b)],
entangled=False,
notify=False

)
cat_disentangler(

control=(bob, b, ro),
targets=[(self, psi)],

)

def run(self):
# Define Qubits
a, psi = self.qubits
b = bob.qubits[0]

# Teleport
self.teleportation(psi, a, b)

class Bob(Agent):
'''
Bob waits for teleportation to complete
'''
def run(self):

# Receive Measurement from Cat-entangler
self.crecv(alice.name)

p = Program()

# Prepare psi
p += H(2)
p += RZ(math.pi/2, 2)

# Create Classical Memory
ro = p.declare('ro', 'BIT', 3)

alice = Alice(p, qubits=[0,2], name='alice')
bob = Bob(p, qubits=[1], name='bob')

QConnect(alice, bob)
CConnect(alice, bob)

Simulation(alice, bob).run()
qvm = QVMConnection()
qvm.run(p)

E. Advanced usage

As described in section III C, netQuil’s devices mod-
ule has a number of built-in source, transit, and target
devices. NetQuil’s custom devices allow users to simu-
late arbitrarily complex devices. All devices must have
an apply function that is responsible for the device’s ac-
tivity. The run function must return a dictionary that
optionally contains the ’lost qubits’ and ’delay’. The ’de-
lay’ represents the time it took qubits to travel through
the device, while ’lost qubits’ correspond to information
completely lost due to attenuation (i.e., photon loss). In
netQuil, If a qubit is lost the target will receive the neg-
ative index of the qubit lost. For example, if Alice sends
qubit 3 and it is lost due to attenuation, Bob will receive
-3, and neither Alice nor Bob will be able to operate on
qubit 3. If the qubit lost is at index 0, then the value
will be set to -inf. Remember that when we send qubits
between agents we are sending the index of the qubit in
the program and not the true qubit. If qubits are lost
while passing through the device, return an entry in the
dictionary lost qubits: [lost qubits].

In some situations, pyQuil programs generated be-
tween trials will be different depending on noise or the
dynamic nature of your network. In order to for accom-
modate this, Simulation().run() will always return a
list of programs (i.e. one program per trial) that can be
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run on a qvm or qpu. Pass the number of trials to be
run into Simulation().run(trials=5), as well as a list
containing the class of each agent being run. Do NOT
forget to pass agent classes (i.e. Simulation(Alice,
bob).run(trials=5, agent classes=[Alice, Bob]),
since this is required in order to reset the agents between
trials.

It is also possible to see a list of transactions
in the network, the time of each transaction, and
information about network devices by setting net-
work monitor=True in run. In addition to individ-
ual agent clocks, a master clock is running through-
out the network simulation and can be accessed through
agent.get master time(). This may be useful for time-
based encodings (e.g. time-bin encoding).

Here, we combine these advanced features into a simple
example program:

class Simple_Fiber(Device):
def __init__(self, len, fq, std):

# fiber quality
self.fq = fq
self.length = len
self.rot_std = std
# speed of light in km/s
self.signal_speed = 2.998 * 10 ** 5

def apply(self, program, qubits):
rot_std = self.rot_std
for qubit in qubits:
rot_angle = np.random.normal(0, rot_std)
# Apply noise
if np.random.rand() > self.fq:

program += RX(rot_angle, qubit)

delay = self.length/self.signal_speed

return {
'delay': delay,

}

class Alice(Agent):
def run(self):

p = self.program
for q in self.qubits:

p += H(q)
p += X(q)
self.qsend('Bob', [q])

class Bob(Agent):
def run(self):

p = self.program
for _ in range(3):

q = self.qrecv(alice.name)[0]

# Check if qubit is lost
if q >= 0:

p += MEASURE(q, ro[q])

p = Program()
ro = p.declare('ro', 'BIT', 3)

alice = Alice(p, qubits=[0,1,2])
bob = Bob(p)

# Define source device
laser = Laser(rotation_prob_variance=.9)
alice.add_source_devices([laser])

# Define transit devices and connection
length = 5
fiber_quality = .6
standard_dev_of_rotation = .1

custom_fiber = Simple_Fiber(
len=length,
fq=fiber_quality,
std=stadard_dev_of_rotation

)
fiber = Fiber(

length=5,
attenuation_coefficient=-.20

)

QConnect(alice, bob,
transit_devices=[fiber, custom_fiber]

)

# Run simulation
programs = Simulation(alice, bob).run(

trials=5,
agent_classes=[Alice, Bob]

)

# Run programs
qvm = QVMConnection()
for idx, program in enumerate(programs):

results = qvm.run(program)
print('Program {}: '.format(idx), results)

V. FUTURE WORKS

In this section we briefly discuss some of the current
limitations of netQuil and propose solutions for signif-
icant improvement. NetQuil is an open-source project,
and we encourage contributions at Github.

A. Quil Limitations

NetQuil is a framework for simulating quantum net-
works built on the open-source Python package, pyQuil.
PyQyuil is a framework that allows users to create and
execute quantum instruction language (Quil) programs.

https://github.com/att-innovate/netQuil
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Quil programs are assembly-like and intended to be run
on a quantum virtual machine or quantum processing
unit, representing a single, real or virtual quantum com-
puter or one of its components. For this reason, Quil pro-
grams are not intended to be shared or modified between
quantum computers and do not give developers access to
individual qubits, but rather a reference to the qubits’ in-
dices. Each netQuil trial generates a single Quil program
that is shared between users and modified during the sim-
ulation. As a result, rather than passing qubits (or their
mathematical representation) between each other, agents
must pass the index of the qubit in the Quil program,
along with the right to modify and operate using that
qubit. In this framework, qubits are never truly lost due
to attenuation or decoherence. Instead all agents loss the
right to modify the qubit or use it for operations. Client’s
are able to access lost qubits by examining the quantum
system’s state.

Finally, the execution of Quil programs slows down
exponentially as the number of qubits in the system in-
creases, because Quil maintains a representation of the
entire quantum state. Generally, without allocating ad-
ditional resources, QVMs typically cannot execute Quil
programs beyond 30 qubits, and likewise, netQuil simu-
lations are limited to 30 qubits.

B. Qubit representation - photons, etc..

In order to accurately simulate quantum computa-
tions, a mathematical formation of qubits must be cho-
sen that is based upon a physical technology. The chosen
representation of a qubit must emulate a two state quan-
tum system that exhibits quantum mechanical proper-
ties, most notably superposition. Moreover, this repre-
sentation must be easily manipulated and allow for mod-
eling coherence and decoherence. In netQuil, devices are
based off of photon qubits that use time-bin encoding
[10]. NetQuil’s noise and device module can be used to
model any unitary quantum noise. Time-bin encoding is

a promising quantum networking qubit candidate as it
is resistant to decoherence, however, time-binned qubits
are often difficult to manipulate and entangle in large
systems.

C. Distributed netQuil Simulations

NetQuil currently runs quantum networking simula-
tions on a single classical computer. As a result, when a
classical channel is established between agents, netQuil
simply simulates the classical network by passing bits be-
tween agents within the program. However, for quantum
networks that depend on classical channels for commu-
nication, as in the case of networks that use quantum
teleportation for quantum state transfer, netQuil could
be improved by allowing for simulations that run across
a cluster of computers or agents that run on individual
servers.

VI. CONCLUSION

NetQuil offers users of all backgrounds a framework for
developing, simulating, and studying quantum informa-
tion theory. NetQuil is particularly useful for algorithms
that involve many-agent computations, distributed quan-
tum gates, entangled qubit systems, and realistic noise
and device models. We hope netQuil allows users to ex-
plore the possibilities of distributed quantum computing.
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Appendix A: Appendix A: Full source code

The full source code for netQuil is available on
GitHub at github.com/att-innovate/netQuil or from The
Python Package Index. Documentation is at att-
innovate.github.io/netQuil. The source code for netQuil
can be found in the /demos directory of the GitHub
repository.
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